Wave springs
Contents |
[edit] Introduction
Wave springs are some of the most widely used types of springs, but often, we don’t even realise that we are using them.
Most commonly found in circumstances where space is limited, wave springs are essential to many components in the world of mechanical design. They must be compact, provide ample force and be able to withstand immense pressure over a long period of time to be effective.
[edit] What are wave springs?
Wave springs are a type of compression spring made from flat wire. They are called wave springs as they have multiple waves per turn. The flat wire, along with multiple waves, combine to create the same amount of force at reduced work heights when compared with other types of springs.
With technological developments meaning that many devices that once used compression springs have shrunk in size, the need for smaller, more compact springs has grown. The reduced size has allowed engineers to reduce the spring cavity once common in many technologies.
Wave springs are designed bespoke dependent on a spring force vs. work height ratio.
[edit] How are wave springs made?
In a similar method to many other types of spring, flat wire is passed through a specially-calibrated machine where it coils and ‘bounces,’ resulting in a wave spring. The machine is set up to process the wire up to a certain length, providing a system that can be tailored to any given project or requirement, and reducing waste.
Whilst wave springs can be made from a variety of materials, including carbon and stainless steel, they require fewer materials to compose, resulting in more cost-effective production.
[edit] Properties of wave springs
Wave springs are versatile; they hold many advantages that maintain their popularity with designers. For example, where space is limited, the innovative design of the wave spring ensures that the same amount of force as a compression spring is produced at 50% of the operating height.
Due to the layered design, only one spring is needed, whereas with alternative springs, such as stacked disc springs, several are needed to provide the same effect. In addition, the design of the spring can be amended to reflect whatever the task requires. For example, factors such as wire size, wire form and the turn configuration can all be altered to ensure that the end result is fit for purpose.
[edit] Common uses of wave springs
Due to the fact that wave springs can be substituted for compression springs, they are regularly used in a number of daily item:
- Trainers
- Door locks
- Suspension systems
- Robotics
- Mechanical equipment
- Technological devices
- Medical products
- The oil and gas Industry
[edit] Related articles on Designing Buildings Wiki
- Compression springs.
- Die springs.
- E-spring.
- Flat springs.
- Key qualities of springs.
- Large and Hot Coiled Compression Springs
- Spring materials.
- Tension springs v torsion springs.
- The Difference Between Tension and Torsion Springs
- The importance of gas springs.
- The Multiple Uses of Compression Springs
- The Uses of Wire Forms Within the Construction Industry.
- Types of spring.
- Using springs in construction to prevent disaster.
Featured articles and news
A case study and a warning to would-be developers
Creating four dwellings... after half a century of doing this job, why, oh why, is it so difficult?
Reform of the fire engineering profession
Fire Engineers Advisory Panel: Authoritative Statement, reactions and next steps.
Restoration and renewal of the Palace of Westminster
A complex project of cultural significance from full decant to EMI, opportunities and a potential a way forward.
Apprenticeships and the responsibility we share
Perspectives from the CIOB President as National Apprentice Week comes to a close.
The first line of defence against rain, wind and snow.
Building Safety recap January, 2026
What we missed at the end of last year, and at the start of this...
National Apprenticeship Week 2026, 9-15 Feb
Shining a light on the positive impacts for businesses, their apprentices and the wider economy alike.
Applications and benefits of acoustic flooring
From commercial to retail.
From solid to sprung and ribbed to raised.
Strengthening industry collaboration in Hong Kong
Hong Kong Institute of Construction and The Chartered Institute of Building sign Memorandum of Understanding.
A detailed description from the experts at Cornish Lime.
IHBC planning for growth with corporate plan development
Grow with the Institute by volunteering and CP25 consultation.
Connecting ambition and action for designers and specifiers.
Electrical skills gap deepens as apprenticeship starts fall despite surging demand says ECA.
Built environment bodies deepen joint action on EDI
B.E.Inclusive initiative agree next phase of joint equity, diversity and inclusion (EDI) action plan.
Recognising culture as key to sustainable economic growth
Creative UK Provocation paper: Culture as Growth Infrastructure.






















